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Abstract. The dynamical evolution is described within the phase-space formalism by means 
of the Moyal propagator, which is the symbol of the evolution operator. Quadratic 
Hamiltonians on the phase space are distinguished in that their Moyal bracket with any 
function equals their Poisson bracket. It is shown that, for general time-independent 
quadratic Hamiltonians, the Moyal propagators transform covariantly under linear canoni- 
cal transformations; they are then derived and classified in a fully explicit manner using 
the theory of Hamiltonian normal forms. We present several tables of propagators. It is 
proved that these propagators belong to the Moyal algebra of distributions, and that the 
spectrum of the Hamiltonian may be obtained directly as the support of the Fourier 
transform ofthe Moyal propagator with respect to time. From that, the quantum-mechanical 
problem for these Hamiltonians is, in principle, completely solved. The appropriate 
path-integral formalism for phase-space quantum mechanics, leading back to the same 
results, is outlined in an appendix. 

1. Introduction 

The phase-space approach to non-relativistic quantum mechanics of spinless particles, 
also called the Weyl-Wigner-Moyal ( WWM) formalism, has of late received renewed 
attention [ 11. In this formalism, observables are directly given by symbols (functions 
or distributions) in the phase space R'". These are univocally related to the operators 
in the ordinary formulations of quantum mechanics by the Weyl correspondence rule. 
Information about the dynamics of a quantum-mechanical system in the WWM descrip- 
tion is stored in the evolution function, or Moyal propagator, i.e. the symbol associated 
to the unitary evolution operator of the given system. 

Here we present a completely explicit calculation of the evolution function for 
time-independent quadratic Hamiltonians, from which one may derive the Green 
functions. In a sense, this paper is a continuation of the programme set out by Moshinky 
and Winternitz [2] to solve Schrodinger equations for Hamiltonians that are second- 
order polynomials in position and momentum coordinates; these authors went no 
further than n = 2 .  There is much advantage in using quantum theory in phase space, 
as we shall see, because it allows full exploitation of the underlying canonical symmetry. 

The structure of the paper is as follows. In § 2 we review briefly the WWM formalism. 
We introduce the Moyal propagators as the evolution functions in phase space and 
the spectral projectors, and derive a formula to compute the Green functions in this 
formalism. Section 3 is devoted to the study of the Moyal propagators of general 
quadratic Hamiltonians; general results are given which are valid in the time-indepen- 
dent case. In 0 4 we proceed to the effective calculation of the Moyal propagators for 
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non-singular homogeneous quadratic Hamiltonians. We give a table of these Moyal 
propagators up to n = 5 .  Section 5 is devoted to the study of the singular and 
inhomogeneous cases; we finish this section with a couple of tables also. In 9 6 we 
deal with the calculation of spectra. 

We include two appendices. Appendix 1 is concerned with technical results which 
make the present approach rigorous. In particular, we prove that the Moyal propagators 
are well behaved generalised functions belonging to an algebra under the twisted 
product, called the Moyal algebra, and that the support of the Fourier transform of 
the Moyal propagator coincides with the spectrum of the Hamiltonian. Appendix 2 
outlines a Feynman path-integral approach to define the Moyal propagator for an 
arbitrary Hamiltonian. 

2. The WWM formalism 

The Weyl map transforms a function or distribution f on the phase space R2" with 
coordinates q, p into an operator W(f)  by 

where Sf is the ordinary Fourier transform off: Throughout the paper, we use the 
convention that h = 2. The operator kernel a( a, 7 )  is given by 

O(u, 7 )  = exp[i( u - Q + T *  P)] = exp[i(cr,Q, +. . . + cr,,Q,, + T ~ P ,  +. . . + T,,P,,)] (2.2) 
where Q1, .  . . , Q n ,  P I , .  . . , P, are respectively the position and momentum operators 
in n dimensions. The operators (2.2) satisfy the canonical commutation relations in 
Weyl's form: 

O ( a l ,  71)a(a23 7 2 )  =n(u,+a2, 7 1 + ~ 2 )  e x ~ [ - i ( a ~ ~ 2 - ~ 2 ~ ~ ) 1 .  (2.3) 
The map f- W(f)  gives a one-to-one correspondence between functions (or 

distributions) and operators. Since the product of operators is non-commutative, we 
must use a non-commutative product of functions on phase space, corresponding to 
the product of operators, and usually called the twisted product [3,4]. The twisted 
product of f  and g will be written f x  g; we demand that W(fx  g) = W ( f )  W(g), or 
equivalently f x  g = W-'[ W ( f )  W(g)]. From (2.1) and (2.3) we find 

XexP[i(q.P,-P* 41+~1'P2-P1 42 

+ 4 2  * P - ~ 2  .4)1 dqi dpi dq, dp2. ( 2 . 4 ~ )  
We simplify the notation by introducing ' U  = (q ,  p )  = ( q ,  , .. . , q,,, p l ,  . . . , p , , )  where 

' U  is the transpose of U, and the matrix 

where I,, is the n x n identity matrix. Now, ( 2 . 4 ~ )  can be written as 

( f x g ) ( u )  =(2.rr)2" jR4, , f (u)g(w) exp[i('ulu+'uJw+'wJu)I du dw 

where ' d u  is the 'symplectic scalar product' of U and U. 

1 
(2.46) 



Phase-space quantum mechanics 2711 

Quantum theory in phase space may be developed entirely in terms of the twisted 

The Grossmann-Royer operators n(u) may be defined [ 5 ]  by 
product without reference to the conventional formulation. 

It can be proved that 

W q ,  P)W) = 2" exp[ip(t- q ) I W q  - 3)  
for wavefunctions q defined on the position space. From (2.1) and (2.5) it follows that 

The utility of the Grossmann-Royer operators is shown by the identity 

Tr II(u)II(u) = ( 4 ~ ) " 6 ( u  - U )  

which implies the inversion formula: 

f ( u )  = Tr[ W ( f ) W u ) l .  (2.7) 

In particular we find that 
r 

and for TI = q2 we recover, but for a constant factor, the time-honoured formula for 
'Wigner functions' [6]. In general 

Let H be a time-independent classical Hamiltonian and let W (  H) be the operator 
determined by H via the Weyl correspondence. We shall always assume that W ( H )  
is self-adjoint. The evolution function or Moyal propagator associated with H is given 
by 
- iHt H x H  H x H x H t 3 + .  
E ~ ( u ,  t ) =  ~ - ' [ e x p ( - t i W ( H ) t ) ] = ~ - - - -  2 2 2 . 2 !  2 3 . 3 !  . . .  

The Fourier transform of E, with respect to t gives us the spectral projectors 
parametrised by the energy E :  

(2.10) 

These are, but for a constant factor, the Wigner functions corresponding to 
wavefunctions which are generalised eigenfunctions of W (  H) with eigenvalue E. We 
prove this assertion for the simplest case in which W ( H )  has a pure non-degenerate 
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discrete spectrum. The twisted product of H and r H  is 

Making use of the phase space version of the Schrodinger equation: 

(2 .11)  

(recall that h = 2 ) ,  we have 

= E r H ( U ,  E ) .  
The second equality comes from integrating by parts. We have finally obtained that 

( H x r H ( E ) ) ( u ) =  E r H ( U ,  E ) *  
The Weyl transform of this equation is written 

W ( H )  W ( r H ( E ) )  = E W ( r H ( E ) ) .  

Therefore, W ( r H (  E ) )  is the orthogonal projector onto the proper subspace of 
W (  H )  with eigenvalue E. If r$E is the normalised eigenvector of W (  H )  with eigenvalue 
E, then r H ( U ,  E )  is, save for a constant factor, the Wigner function corresponding to 
4 E .  

The foregoing suggests that the spectrum Sp H of W ( H )  is the support on the 
variable E of the function (more correctly, the distribution-valued measure ) r H ( u ,  E ) .  
We prove this in appendix 1. 

Green functions, defined as transition amplitudes from the state 14,) at time to = 0 
to the state lqf) at time t ,  can be evaluated using the phase-space Moyal propagator 
[ 7 ] .  Writing U (  t )  = e - l rW(H) '2 ,  a formal calculation gives 

To see this, we observe that, by ( 2 . 9 ) :  
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We can now build a twisted functional calculus with the symbols, with an important 
difference: its elements are concrete functions (or distributions) in phase space. The 
general formula for this is 

fx(H):= J s p H f ( ~ ) r H ( u ,  E )  dE. 

Some important elements of a functional calculus are 

=,+(U;  t )  = IspH ~ H ( u ;  E )  

(a )  The aforesaid evolution function or Moyal propagator: 

- d E  

( b )  the resolvent function: 

defined for A E C, A E Sp H, which verifies R H ( u ;  A )  x (H - A )  = 1; 
( c )  the twisted powers: 

We finish this section by giving the law of evolution of the observables. In 
conventional quantum mechanics, observables evolve in the Heisenberg picture accord- 
ing to 

F (  t )  = e i H r / 2 ~ ( ~ )  e-iHr/2 

I f f (  t )  = W-'[  F (  t ) ] ,  we have 

f ( t )  = W-'[e"''*F(o) = E * , ( t )  x ~ ( o )  x ~ ~ ( t )  (2.12) 

which is the corresponding law of motion for observables in phase-space quantum 
theory. 

3. Quadratic Hamiltonians 

The general expression for the n-dimensional quadratic Hamiltonian is given by 

H( t )  =it&( t ) u  + 'uc( t )  + d (  t )  

where B(  t )  is a 2n x 2n symmetric matrix, c(  t )  is a 2n-vector and d (  t )  is a real function 
of t .  

Since the Hamiltonian is quadratic, the corresponding system of Hamilton equations 
is linear. Therefore, the solution to the classical equations of motion has the form: 

u ( 4  t o ) = V t ,  t o ) u o + 4 4  t o )  (3.1) 
where Z(t ,  to) is a 2n x 2 n  matrix and uo is given by the initial condition u( to ,  to) = uo. 
Therefore, Z( to ,  to)  = I and a ( t o ,  to)  = 0. The functions Z and a obey the following 
pair of differential equations: 

& ( t ,  to) = . m ( t ) Z ( t ,  to)  ( 3 . 2 ~ )  

a(?,  to)  =JB(t)a(t, t o ) + J c ( t )  (3.26) 
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subject to the given initial conditions (the dot means d / a t ) .  They can be written as 

a(  t, to)  = X( t ,  T)Jc( 7) dT. 1.: 
A symplectic matrix is a 2n x 2n matrix S for which 'SJS = J. One can easily check 

that X(t,  to)  is symplectic for all t. If we transpose (3.2a), omitting the dependence 
on time for simplicity, we have 

t i  = 'X 'B'J = -'E BJ. 

We then obtain 

d - ('XJX) = 0 
dr 

that is, 'XJX = K ,  where K is a constant 2n x 2n matrix. Since Z( to ,  to) = I ,  we have 
K = J and hence Z( t ,  t o )  is symplectic. 

We define the 'Moyal bracket' {. ,  - } M  as 

(1; g I M  := - ii(f x g - 8 X f  1 
The quantum evolution law (2.12) may be written in differential form as a Heisenberg- 
Liouville equation: 

d 4 t ,  t o ) l a t  = { 4 t ,  to), HIM.  
On the other hand, classical Hamiltonian mechanics gives 

t o ) l a t  = { 4 t ,  t o ) ,  H I P  

where { *, denotes the Poisson bracket. 

Let $/dqJ := afldp, ,  ; f l ap j  := - a f / a q j .  Then, i f f  or g is a polynomial, we have 

g 
i ' I + - +  '2n ar ,+ . . .+ r2nf  s r l + . . , + r z m  

f x g =  c r l ! .  . . r Z n !  a' lu , .  . . dr2,1u2,, a' lu,  . . .drz"u2" 

by integration by parts; moreover, this formula holds as an asymptotic series in more 
general cases [8]. In particular, for H quadratic, we get 

(3.3) 

It is clear that { H , f } p  = { H ,  f } M  for any f if and only if H is a polynomial at most 
quadratic in the phase-space coordinates; this was first pointed out by Uhlhorn [9], 
and forms the starting point for the deformation theory of Bayen et a1 [ 101. Note that 
this corresponds to linear classical dynamics. That property sets apart this particular 
class of Hamiltonians, as it makes feasible a fully explicit solution of the corresponding 
quantum problem in phase space. In fact, it can be argued that Moyal's is the proper 
setting for quantum mechanics of quadratic Hamiltonians, as it allows one to bring 
in the full power of canonical symmetry. The latter is hidden in the conventional 
formalism, making the solution of the Schrodinger equation for quadratic Hamiltonians 
a painful business in general. 
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There is another property that singles out quadratic Hamiltonians in R'": if we 
call 'canonoid' any coordinate transformation in phase space that preserves the form 
of Hamilton's equations corresponding to a given fixed Hamiltonian, then the following 
holds: a transformation of R2" is canonical if and only if it is canonoid for all quadratic 
Hamiltonians [ 113. This result has been recently extended to Banach symplectic spaces 

It is an  open problem to see whether the link between the canonoid-canonical 
relationship and  the equality of Moyal and Poisson brackets generalises to other phase 
spaces (homogeneous symplectic manifolds) quantised Ci la Moyal (see, for instance 

The components of U in (3.1) must change with time according to the law of 

[121. 

~ 3 1 ) .  

evolution of the observables: 

u(t, to )  = E:",(?, to)  x u o x  E H (  t ,  t o )  

or 

Z H ( f , f O ) X U ( t , f O ) = U O X E H ( f , t O ) .  

Here the propagators ZH( t, to)  still obey equation (2.1 l ) ,  with E H (  to,  to) = 1. 
From (3.1) we obtain 

(3.4) 

where a / d u  denotes the gradient with respect to U. 

Formula (3.4) can be written as 

aEH 
au 

(I:-'+z)J-= -i[ (Z  -I:- ')u+I:- 'a]EH. 

If we multiply by X, this yields 

( I + X ) J d E H / a U  = -i[(x-- I ) u +  a]=:, 

Now, assuming that (I: + I )  is non-singular (non-exceptional case), we have 

a Z H / a u  = i[J(I;+ I ) - ' ( I : -Z)u+J(E+ I ) - ' a ]EH.  

This is a system of partial differential equations having the solution 

EH = F ( t ,  to )  exp[$('uGu+'uk)] (3.5) 

with 

G = J ( x + I ) - ' ( x - Z ) = J - 2 J ( x +  Z)-' ( 3 . 6 ~ )  

~ = ~ J ( I : + + ) - ' u = ( J - G ) u .  (3.6b) 

The matrix G is symmetric. To prove it, we introduce I:# := (I: - Z)(Z + I ) - '  which 
is the 'Cayley transform' of I: and note that G = JZ#. Then 

'G = -'C#J = ( I  + 'I:)-'( I - ' x ) J  = ( I  + J x - ' J - ' ) - ' ( I  - J I : - ' J - ' ) J  

= J ( I  + 2 - ' ) - ' ( 1  -E-') = J(Z+ Z)-'(x - I )  = JX;" = G. 
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In order to obtain F ( t ,  to) in (3.5), we need to use the Schrodinger equation (2.11). 
After some calculation, one obtains 

(3.7) 

provided that the determinant does not vanish. The exponential term is given by 

Note that p vanishes when H is homogeneous of degree 2 .  Formulae equivalent to 
(3.5)-(3.8) appeared already in [14]. We have rederived them for the benefit of the 
reader. 

From now on, we shall suppose that B, c and d do  not depend on time, so as to 
obtain fully explicit results. Under this assumption, equations (3.2) are easily solved 
and their solutions are 

Z ( t )  :=Z(r, 0) = X ( t + r o ,  to) =e'B' ( 3 . 9 ~ )  

a ( ? ) : =  a ( t , O ) = a ( t + t o ,  to)=(JB)-'[exp(JBt)-I]Jc=(Z(t)-I)B-'c. (3.9b) 

Equation (3.9b) makes sense only if det B f 0. On the other hand, if det B = 0, we 
have 

3 t 2  t" . . + ( J B ) " - ' y + .  . . Jc 
n .  

that we shall take as the meaning of (3.9b) by convention. 

Then, there exists a non-singular matrix S such that T = S-IJBS. Hence 
We next study the exceptional case. Let T be the Jordan canonical form of JB. 

e 'B '+I=SeT 'S- '+SS- '  = S ( e " + I ) S - ' .  

Thus det(X+ I )  = det(e" + I ) .  Therefore, if T has the eigenvalues A I , .  . . , A2,, we have 

(3.10) 

Thus, det(X+ I )  = 0 iff some factor ( e A h f +  1 )  vanishes. In that case, A,? = (2n + l ) r i  or 

det(X+ I )  = (e*!'+ 1) . . . (eAznf + 1). 

(2n + 1 ) r i  r =  
A k  

Since t must be real, ,Ak is thus purely imaginary. In such a case, the singularities of 
the Moyal propagator will be equally spaced in time. This situation really occurs, as 
we shall see. 

We present now a crucial result for the study of quadratic Hamiltonians: covariance 
of the Moyai propagators under linear canonical transformations. 

Theorem 1. Let H =tf)-t'uc+ d be a time-independent quadratic Hamiltonian and 
let S be a real 2n x ' 2 p  syrnplectic matrix. If we define a new Hamiltonian by H ' =  
~ ' u B ' Y  +'d+ d with. B' ="SBS c' = 'Sc, then 

I - 
= H ' ( u ,  t ) = Z : , ( S u ,  t ) .  (3.11) 
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ProoJ: According to (3.5) and (3 .7)  

exp[ip'( t ) / 2 ]  exp[$i('uG'u + ' w k ' ) ]  

where 

Therefore 

and 

Thus 

and so 

Hence 

det ( y) = det [ S-' (?)SI = det( y) 
GI= J ( Z ' + Z ) - ' ( Z ' - Z )  =J(S-'ZS+Z)-'(S-'ZS-Z) 

= J S - ' ( Z +  Z)-'(Z- 1)s 3 ' S G S .  

'uG'u = 'u'SGSu = '( Su)  G( Su)  

k ' =  ( J  - G')u' 

a ' =  ( J B ' ) - ' [ e x p ( J B ' t )  - Z]c'= ( J ' S B S ) - ' [ S - ' Z S - I ] J ' S c  

= S - ' ( J B ) - ' ( Z  - Z)Jc = S- 'a  

k ' =  ( J - ' S G S ) S - ' a  = ( ' S J S - ' S G S ) S - ' U  = 'Sk 

2717 

(3.12) 

(3.13) 

(3.14) 

' u k ' =  'u'Sk = ' ( S u ) k .  (3.15) 

To complete the proof, it remains to check that P I (  t )  = P ( t ) .  This follows from 

'c 'Jk'= 'cSJ'Sk = 'cJk 

'k'JB'Jk' = 'kSJ 'SBSJ 'Sk  = 'WBJk. 

Together with (3.13)-(3.15), this proves (3.1 1). 

Corollary. H and H '  have the same spectrum. 

Prooj Note that equation (2.10) implies that 

r,&, E ) = r H ( S u ,  E )  

and that the support on E of this function represents the spectrum of the corresponding 
Hamiltonian. Note also that the transformation H H H '  is equivalent to the coordinate 
change U' = Su. 
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Theorem 2. Let H = i'uBu + 'uc + d be a time-independent quadratic Hamiltonian and 
uo = (qo ,  pa) a 2n-vector. If we define a new Hamiltonian by HI:= ~'uBu +'uc'+ d '  with 
c ' =  Buo+c and d ' = ~ ' u o B u o + ' u o c + d ,  then - 

= H ' ( U ,  f ) = x H ( u + u O ,  2). 

Proof: E H . ( u ,  t )  is again given by (3.12), but in the present case B ' =  B, so 2'= Z and 
hence G ' = J ( X ' ) # = J C # =  G. Moreover, from (3.26) and (3.66) we get a ' =  
a + (E - I ) u o  and thus k' = k + 2Gu0. A tedious calculation now gives 

p ' (  t )  = [$'e'( T ) J k ' ( T )  +$'k ' (  7)JB( T ) J k ' ( 7 )  - d ' ]  d r  lo' 
= p (  t )  + I' ['u0G( 7 ) u o + ' u 0 / i ( 7 ) ]  d 7  = p (  t )  + 'uoG( t )uo+'u0k(  2 ) .  

0 

From this E H , ( u ,  t) = S H ( u + u 0 ,  t )  follows at once. As before, the spectra of H and 
H '  coincide. 

As an  obvious corollary of theorems 1 and 2, if S is a real symplectic matrix and  uo 
a real 2n-vector, we have 

(3.16) 

where H'  is the quadratic Hamiltonian obtained by replacing U in H = i'uBu + 'UC+ d 
by Su + uo.  Also, we have Sp  H = Sp  H ' .  In other words, for quadratic Hamiltonians, 
the Moyalpropagator is covariant and  the spectrum is invariant under the group ISp(2n, R )  
of inhomogeneous canonical transformations. 

Equation (3.16) gives us a method to obtain the Moyal propagators for all the 
time-independent quadratic Hamiltonians. We may group these Hamiltonians in 
equivalence classes. H and H '  belong to the same class if and only if we can find an  
inhomogeneous symplectic transformation connecting them. If we find the Moyal 
propagator for one representative of a class, we can find the Moyal propagators of all 
Hamiltonians of the class from (3.16). Once we have found simple representatives 
(called, in the homogeneous case, normal forms [ 151) two main difficulties still arise: 
one is to determine which class contains a given Hamiltonian; the other is to obtain 
the matrix S relating this Hamiltonian with its corresponding normal form; however, 
we will not go into these questions here. On the other hand, we reassert, the spectra 
of two Hamiltonians belonging to the same class are identical. 

A transformation from H into H '  = H + d, d being a constant, shifts the spectrum 
Sp  H into Sp  H '  = Sp  H + d = {x E R :  x = y + d, y E Sp  H } ,  as one can easily deduce 
from (3.8) and  (2.10). Here EH,(u, t )  = EH(u, t )  e-id"2. 

At this point, we wish to remark that, given an homogeneous Hamiltonian H = k'uBu, 
there exists a class of complex symplectic transformations B H B' = 'SBS, where 8' is 
again a real symmetric matrix, so that H ' =  SuB'u is also a Hamiltonian. Moreover, 
the conclusion (3.11) of theorem 1 holds under this more general class of transforma- 
tions. (However, if we are looking for the class of complex symplectic transformations 
for which 'SBS is real and  symmetric for every real symmetric B, we find that either 
S is real or else S = iM, where M is real. Such an  M is not symplectic, since 'MJM = - J ;  
but if we write 

- 
= H ' ( U ,  t ) = s H ( S U + U O ,  t )  

where M,, E R""" for i, j = 1,2,  then $ is symplectic.) 



Phase-space quantum mechanics 2719 

4. Classification of the Moyal propagators in the non-singular case 

In the present section, we consider those Hamiltonians H for which det B # 0. In that 
case, we can write 

H = f ‘ ( u + B - ’ c ) B ( u f B - ’ c ) + d ’  with d ’ =  d - f ‘ c B - ’ c  

so that H is equivalent to H ’ = f ‘ u B u + d ’ ,  and therefore the study of the quadratic 
Hamiltonians whose quadratic form B is non-singular can be reduced to the study of 
the non-singular homogeneous quadratic Hamiltonians. 

Here, we intend to find the Moyal propagators of these Hamiltonians. After (3.11), 
we need only obtain the Moyal propagators for the normal forms, which are simple 
representatives of the equivalence by conjugacy classes. The normal forms have been 
classified and one can find an extensive study of them in the literature. The classification 
begins with the following result. 

Proposition. (i) If B is symmetric and A is an eigenvalue of JB, then so are -A, i, -1 
and they all have the same multiplicity. The eigenvalue 0 always appears with even 
multiplicity. 

(ii) Let A i ,  1 s k, denote the eigenvalues of JB and let V,  be the corresponding 
generalised eigenspaces of JB, i.e. 

( A , i  - JB)*,u = 0 iff v E  V,  for m, integer 3 1. 

Then each V,  is invariant under JB, R2” = 0 F = l  V,  and 

k 
det(Al-JB)= n ( A - A , ) d p  with d, = dim V,  2 m,.  

1 = l  

(i i i)  The invariant subspaces VI are symplectically orthogonal: 

‘uJu’ = 0 if v E V,, U ’ E  V, ; A ,  # * A j ,  hi,. 

ProoJ: Straightforward linear algebra. For instance, ( i )  follows from observing that 
the characteristic polynomial of JB is even. 

According to ( i i )  and (iii), JB and therefore fJBf, can be reduced by blocks. This 
decomposition carries over to the quantum context: the propagator associated to a 
decomposable matrix JB is given by the ordinary product of propagators corresponding 
to each indecomposable block. The equality of ordinary and twisted products in this 
case follows immediately from the definition of twisted product. 

The classification theory of normal forms for linear canonical systems was initiated 
by Williamson [16] and developed by many others. Here we use the classification 
scheme due to KoGak [17]. 

The possibilities for the indecomposable blocks are: 
( a )  JB has two real eigenvalues a, - a ( a  > 0); 
( b )  JB has two purely imaginary eigenvalues ip, -ip(p 
( c )  JB has four distinct complex eigenvalues * a  * ip( a, p > 0). 
We here present a list of the indecomposable normal forms. 

0); 
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( a )  The eigenvalues are a, - a ( a  > 0): 

( b )  The eigenvalues are ip, -ip ( p  > 0). We have four inequivalent types: 
(9 

(4.2) 

where Q, R E  R k x k  with k even, I = (A : ) , A = ( ;  -:),and ~ = i l .  

(ii) 

where U, V E  R k x k  with k odd, E = * l e  
(c) The eigenvalues are *a  *@(a,  p > 0): 

K =  [' e ... )E R Z k x Z k  (4.4) 
J B = (  K O  - t K )  with 

I C  
where I = ( o  1 0  ip). 

A decomposable form is constructed simply as a direct sum of indecomposable 
forms, here called 'canonical blocks'. For instance, if Y and Z are two normal forms 
of dimensions 2 m  and 2 n  respectively, their composition could be 

x=(' 0 z .  0 )  (4.5) 
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We will maintain the convention that ‘U = ( q , ,  . . . , qm+,,, p , ,  . . . , p , + , ) ,  so that the 
direct sum (4.5) must be rewritten 

\ o  2, 0 z,l 
where %E R“””,  Z, E R””“ (j = 1 , 2 , 3 , 4 ) .  

In general, if we call X the composition of s canonical blocks of the form 

Yk = ( :l :’), k = 1,. . . , s, then X = (:: :), where each X, is a block diagonal 

direct sum of the Ykj. Note, in particular, that this convention preserves the form of 

J = ‘0.) under direct sums. 

Now we proceed to the effective calculation of the Moyal propagators. Since the 
Hamiltonians considered in this section are homogeneous, we have to obtain G and 
det((l):+ I ) / 2 )  only. Formula ( 3 . 6 a )  yields 

If JB is a canonical form, we can write J B  = L+ N where N is nilpotent and L 

(i) diagonal as in ( 4 . 1 ) ;  
(ii) block diagonal as in (4.2) and ( 4 . 4 ) ;  here the blocks are equal to A and C 

(iii) antidiagonal as in (4.3). 
The function tanh z is analytic except when Im z = ( 2 n  + 1)irr. Because N k  = 0, we 

can be one of the following forms: 

respectively; 

have the matrix-valued series expansion: 

tanh-=tanh-+ JBt Lt k - 1  - 1 (?)“-&I ( t anhz ) .  
2 2 n = l  n !  z =  L1/2 

( 4 . 6 )  

To elucidate the right-hand side of ( 4 . 6 ) ,  we examine the following three 
possibilities. 

Case 1 .  L is diagonal as in ( 4 . 1 ) .  Then 

tanh 2 L(: tanh y )  
Note that [ ( l / a ) L I 2  = I .  The nth derivative is 

(tanh z )  

(tanh z )  
d“ [ (tanh z ) =  
dz”  : = L I / z  I-- 

If we define & + ( U ,  t )  as 

gH(u, t )  := -‘uGu = -‘uJ 

( 4 . 7 )  

if n is even 

if n is odd. 
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we have 
2 at at H k t k - '  dk-I 

gH(u,f)=-H1tanh-+H2tsech2-+ . . . +  (tanh z ) .  
a 2 2 2 k - 2 ( k - l ) !  dZk-' 1 z = m f / 2  

Here 

H,:= -t'uJLu 

Hntl := -~t&N"P"tlu 

H2 := -+'&Nu and if n = 2 , .  . . , k -  1 
(4.8) 

if n is odd 
if n is even. 

where P" = {('/la) 
Obviously, H = H, + H2. 

Case 2. L is block diagonal as in (4.2) and (4.4). If JB is given by (4.2), then 

(tan z )  (4.9) 
JBt 1 
2 P  

tanh-= L-tan(fpt)+ 

where P" = ( - 1 ) ' " - " / 2 ( 1 / P ) L  if n is odd, and P" = ( - I ) ( " + 2 ) ' 2 Z  if n is even. 

To derive this formula, we recall that A = (I -:) and note that 

1 
= A - tanh($t) 

P 
and so 

Lr 1 
2 P  

tanh-= L-tan($?). (4. loa) 

If, for simplicity, we write T = ( l /P )L ,  we easily obtain that T 2  = - I ;  T3  = - T; 

tanh(@tT) = T tan($t) (4.11) 

T4= I. It is also clear that ( 4 . 1 0 ~ )  can be written as 

and (4.1 1 )  implies that 

(tanh z )  = T-"+l - (tan z )  (4.12) 

Hence (4.9) follows. Also 

2 pt k - l  1 t" 
gH(u, t )=-H1tan-+  -- H n + l s  1 (tan z )  (4.13) P 2 "=, n !  2"-' r=p1/2 

where HI , .  . . , Hk are defined here as in (4.8). Note that H = H, + H2 again. 
If JB is given by (4.4), then 

T O  
0 -z 
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where T is a direct sum of 2k blocks of the form ( y  -A). After some calculation, 

we obtain that 

where 

sin 2y 
f i , n  =- 

x = n r / 2  
y = P t / 2  

y = p 1 / 2  

y = $ 1 / 2  

If W now denotes 

w h e r e I = (  1 0  ) 
0 1  

we have 

). (4.14) 
JBt k - '  1 ( t ) " ( " , "  W" +ogl,n W"T 0 

( - l)"fi,, W" + (- 1) "g2,, W" T 
tanh-= - - 

2 2 

From this, g H ( u ,  t )  may be computed explicitly, but we shall omit the (rather compli- 
cated) general formula. The lower-multiplicity cases are exhibited in table 1 .  

Case 3. L is of antidiagonal form as in (4.3). 
In this case, formulae (4.9) and (4.13) are reproduced. The proof is as follows: 

tanh z is an odd function and consequently only the odd powers of z will appear in 
its Taylor expansion on a neighbourhood of zero. If we define K as ( l / ~ p ) L ,  then 

10 . . .  0 J\ 

a n d w e h a v e  K 2 = - I ,  K 3 = - K ,  K 4 = I , a n d  

Lt E P  t Pt L Pt 

2 2 2 P  2 
t anh-=tanh-K=&K tan-=-tan-. (3 .  lob) 

From (4.10b) a straightforward calculation gives (4.12), with T replaced by K ,  and 
hence we have proved the validity of (4.9) and (4.13) in the present case. 
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From the preceding formulae, one can now write down the desired Moyal propa- 
gators. 

Expression (4.13) becomes singular at t = ( 2 m  + 1 ) r / P ,  m an integer, as expected. 
However, Z H ( u ,  (2m+1)7r /P)  is a well defined distribution, a multiple of Dirac's S 
in fact, and  the map f -  Z H (  U, t )  is everywhere continuous in the appropriate topologies 
(see appendix 1). 

For the decomposable Hamiltonians, the matrix tanh(JBtl2) is obtained as a direct 
sum of the expressions for the corresponding indecomposable summands of JB. To 
obtain det((X++1)/2), we have to find the eigenvalues of JB and then apply (3.10). 
The set of eigenvalues of JB is the union of all the eigenvalues of each canonical block 
Yk, since JB may be written as a direct sum of these blocks by permuting the q and 

p coordinates. The details are straightforward. 
As remarked before, if H can be written as a sum of Hamiltonians H =  

H l (  u I )  + . . . + H,( u~), where U = (U,, . . . , U,) and the several U, lie in symplectically 
orthogonal subspaces, then 

- 
ZH(% f )  = n EH,(ur,  f ) =  fl = H , ( U , ,  1 ) .  

I S , S S  I S I S 5  

This fact extends to the singular case (det B = 0). 
We end this section with a pair of useful results. 

(4.15) 

Lemma 1. Let H 1  = i 'uAu and H2 = i'uBu be two homogeneous quadratic Hamiltonians 
of dimension 2n, where A and B are symmetric matrices. Then J B - H B  is a Lie 
algebra isomorphism. In particular, the classical Poisson bracket { H A ,  HB}p is identi- 
cally zero if and only if the commutator [JA, JB]  vanishes. 

Proof: We may write 

where a/au denotes the gradient, as before. Since aHA/au = Au and d H B / a u  = Bu, we 
have that 

{HA, HB}p ='uAJBu = - 'uBJAu=~'u(AJB-BJA)u .  

Assume now that the Poisson bracket is identically zero. We have equivalently that 
JAJB - JBJA = 0. 

Theorem 3. Let H = i'uBu be any homogeneous time-independent quadratic Hamil- 
tonian. Then the classical Poisson brackets { H ,  &,(U, r ) } p  and { H ,  ZH(u ,  t ) } p  are 
always zero. 

Proof: In the expansion (4.6), all the terms commute since [ L, NI  = 0. It follows that 
{H,,,, H,,}p = 0 in all cases, and hence { H ,  &,(U, r ) } p  = 0. (We leave the details to the 
reader.) 

We remark that theorem 3 is formally a corollary of the result [ 181: { H, H X n } , ,  = 0. 
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We summarise the results up to now in table 1, which includes all non-singular 
homogeneous indecomposable types u p  to dimension n = 5. In table 1 ,  a > 0, p > 0 
and  E = *l. 

Table 1. Non-singular homogeneous Hamiltonians. 

~~ 

Indecomposable Hamiltonians with det B # 0. 

n = l  (case a ) :  H = a q p ;  I , ( r r ) = s e c h ( ~ ) e x p (  

f l = l  (case b) :  H = i ~ P ( q ~ + p ’ ) ;  I H ( u , t ) = s e c ( $ ) e x p (  - 1 H t a n -  P 

at i t  
2 2  

- zH ( U, t )  = sech’ (”2) - exp(  -; HI tanh --- H, sech2 - 

n = 2  (case b ) :  H = H,+H,; H, = P ( q 1 p z - q 2 p l ) ,  H, = A E ( q : + q : ) ;  

2 2  2 c H ( u ,  - I )  =sec2 ($) exp(  -i HI tan 
P 

2 
at i t  at i t 2  

2 2  
( y )  exp( -: HI tanh --- H, sech2-+- H3 tanh 

2 4  
E,(u, t )=sech3 - 

n = 3 (case b) :  H = HI + H,; HI = @(fq: - q1q3  + $ p i  -pI  p 3 ) ,  H, = q1 p 2  + q 2 p 3  ; 

H3=-f&(q:+p:); 

2 2  
- P I  it pr i t 2  

P 2 2  2 4  
z ~ ( u ,  1 )  = sec3 ($) exp(  -i HI tan --- H, sec2 -+- H, tan 

n = 4 (case a ) :  H = HI + H2 ; HI = a(ql p1 + q2p2 + q 3 p 3  + q4p4), 

H2 = %PZ+ q 2 P 3  + 93P43 H3 = q1P3 + %P4r H4 = 41 P 4 ;  

- at i t  at 
= H ( u ,  I )  = sech4 ( y )  exp [ -i HI tanh --- H2 sech’ - 

2 2  2 

at 
2 

i t 2  at at i t 3  

4 2 2 24 
+- H3 tanh - sech2-+- H4 1 - 4  tanh2-+3 tanh4 - 

- z H ( u ,  t )  = sec4 ($) exp [ -I HI tan --- P t  i t  H, sec’ - P I  

P 2 2  2 
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Table 1. (continued) 

n = 4 (case c): H = H I  + H 2 +  H 3 ;  H I  = a ( q l  p ,  + q 2 p 2 +  q 3 p 3 +  q4p4) ,  

H2 = P ( q I P 2 -  42P1+ 43P4- 44P3)r H3 = 4 'P3+ 42P43 H4 = 42P3- 41 P 4 ;  

4 sinh at I sin PI - S H ( U ,  I)' exp[ - i H ,  -- H, 
(cosh a f + c o s p ~ ) ~  a cosh a1 +COS P I  P cosh at + cos P I  

1 1 +cosh ar cos PI , sinh at sin pr 
(cosh a t + c o s p t ) z  (cosh a ~ + c o s p t ) ~  

-ifH3 - IIH, 

n = 5 (case a ) :  H = H I  + H,; HI = a ( q , p ,  

Hz = 41P2+ 42P3+ %P4+ 44P5 I H3 = 4 'P3+ 42P4+ 43P5 9 

H4= 4lP4+42P5,  H5 = 41 Ps; 
- at i f  a1 
E ~ ( u ,  ~j=sech ' (? )exp[  -i H I  tanh---H2sech2-  2 2  

2 

i t 2  CY1 

4 2 2 
+- H3 tanharsech2 ( y )  +$ H4( 1 - 4  tanh2-+3 tanh4- 

"31 2 
f f l  

2 
5 tanh' - + 3  tanh5 - . 

n = 5 (case b ) :  H = HI + H,; H,  = -ED(  q l q 5  - q2q4+$q: +pl p5 - p 2 p 4 +  i p : ) ,  

H, = 4' Pz + 42P3 + 43P4 + 44P5 > H3 = - & ( q l q 3  - 5s: + P3 Ps - fP3,  

H4 = 41 ~ 4 +  4 2 ~ 5 ,  H, = - t E ( d  + P z ) ;  

- z H ( u ,  t )=sec5  ($) exp[ -i HI tan--- pr i f  H2sec2-  P I  

P 2 2  2 

48 

5. Classification of the Moyal propagators in the singular case 

We study the homogeneous Hamiltonians first. In the homogeneous case, there are 
two indecomposable- normal forms: 

( a )  

IO 
JB=(' O )  U = (  1 0  . . . .  R -'U . .  

i.=(" 0 -'U O ) 

R =  

0 

0 
*I 

In case ( a ) ,  U and R have & ( k +  1) rows, where k is odd; in case ( b ) ,  U has k+ 1 
rows, where k is even. 
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In both cases JB is nilpotent: ( J B ) "  f 0, (JB)k"=O.  The Taylor expansion of 
tanh z at z = 0 is 

where Bzm are the Bernoulli numbers. Therefore 
JBt [ ( k + l i ' 2  I p(p - 1 )  JBt 

tanh-= 2 m = l  ( 2 m ) !  B 2 m ( i )  

where 

( k +  1) /2  if k odd: case ( a )  
if k even: case ( b ) .  [?]={k/2 

Also 

where 

HI = i'uBu = ; ' u ( B J B J . .  . J B ) ~ .  - 
4171-3 factors 

By applying formula (3.10), we obtain det[(Z+ 1) /2]  = 1. 
The analysis for the homogeneous decomposable case is exactly the same as when 

det B # 0; in particular, (4.15) remains valid. 
The study of the inhomogeneous singular Hamiltonians is more complicated. We 

cannot reduce the study of the Moyal propagators to the homogeneous case. We know 
no general method to classify these Hamiltonians into equivalence classes under 
coordinate changes of the type U '  = Su + uo, S being a real symplectic matrix. Thus, 
we classify the Hamiltonians for each dimension and study them case by case. 

In table 2 ,  we list the singular homogeneous indecomposable types up to dimension 
n = 5. In table 3, we list representatives of the inhomogeneous singular Hamiltonians 
for n = 1 and n = 2. In all cases, a > 0, p > 0 and E = k l .  

Table 2. Singular homogeneous Hamiltonians. 

lndecomposable Hamiltonians with det B = 0. 

n = l : H = - -  ;Eq-; ' -  z H ( u ,  f ) = e x p ( - f i H t ) .  

n = 2: H = q , p z  - i e q : ;  E H ( u ,  f )  = exp [ -\( Hf -: ( i ) ' q ? ) ]  

n = 3: H = q l p 2 +  q z p ,  - $ E q i ;  

- 
=H ( U, f 1 = exp [ - ( H f  + (!) '( 2 y, q 1  - qs ) - 2 ( A )  ' 4:) ] , 

3 2  15 2 
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Table 2. (continued) 

n = 4 :  H = q,p,+ q2p3+ q3p4- f8q$ :  

1 t 3  2 E  I ' 178 t 
EH(u, t )  =exp[ -: ( H t + i  (i) ( -2q1p4+2~q ,p2  - €9 : )  +- 15 (-) 2 (2q1q3 - q f )  --(-) 315 2 ' q i ) ]  

Table 3. Singular inhomogeneous Hamiltonians. 

Inhomogeneous case: H = ~ ' u B u  +'cu; det B = 0, c f 0. 

n = 1: H = aq+ bp; E,(u, t )  = exp(-iiHt). 

n = 2: H = aq, + bq, + ep, +fp, ; E, ( U, t )  = exp( -$Hi). 

n = 2: H = q , p , - ~ & q ~ + a p , ;  

- (U, t )  = exp [ -: (Hi -? ( 4 :  - 2aq2)r' 
24 240 

n = 2: H = - L E  , q:+aq, + bp, + ep,; =,(U, r )  = exp [ - ; ( H t - g 1 3 ) ] .  

s a 2 + E ' b 2  

24 
n = 2: H = - feq: - tE 'q :+ap,  + bp,; Z H  (U, t )  = exp [ -: ( H i  -~ r')] . 

n = 2 :  H = H,+H,; HI = aq,p,, H, = 04, +bpi; 

E , i r O = s e c h ( y ) e x p (  - L H , t a n h - - - H 2  at i t  

2 2  

n = 2 :  H = HI +H,; H, = - t @ ( q : + p : ) ,  H,= aq, +bp l  

3 Pt i t  
=,(U, r )  = sec (F) exp( -i HI tan--- H, 

P 2 2  

n = 2: H = HI + H, ; HI = aq,p,, H ,  = - feq:  + ap, ; 

n = 2: H = HI + H,; HI = - f e p ( q ; + p ; ) ,  H, = - f a ' q i  + ap, ; 

. 
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6. Spectral analysis 

As we prove in appendix 1 ,  the spectrum of a Hamiltonian H can be identified with 
the support on E of the spectral projector rH( U, E ) .  A possible way to obtain properties 
of the spectra of the quadratic Hamiltonians is then to do Fourier analysis on the 
Moyal propagators studied here. We show how this comes about for n = 1. From the 
previous tables we extract six representative Hamiltonians, which cover all possible 
cases. 

( i )  Trivial. 
3 H=O = H ( u ;  t ) = l  

We have r H ( U ;  E ) = 6 ( E ) ;  Sp H={O}. 
(ii) Free particle. 

2P 
H = '  2 z H ( u ;  3 t )  =exp(-tip2t) .  

We have rH ( U ;  E )  = 6 ( t p 2  - E ) ;  SP H = R' 
(iii) Free-fall Hamiltonian. 

H = i p 2 + q  E H ( u ;  t )=exp[-$i(Ht+ t3/24)]. 

From 

exp(ivx+fiv3) d v  

we have 

r H ( U ;  E )  =21'3 Ai(21'3(H - E ) )  S p H = R .  

(iv) Harmonic barrier. 

H = $ ( p 2 - q 2 )  - = H ( u ;  t )=sech (i) exp( -iH 

Using Kummer's formula: 

one can show 

r H ( U ;  E ) = - s e c h  ( ;E)  - e - i H  IFl(f(l - i E ) ,  1 ,2 iH)  
2 

and consequently Sp H = R. 
(v )  Harmonic oscillator. 

H = $( p 2 +  q 2 )  

sec (i) exp (-iH tan i) if t # (2k + l ) ~ ,  k E Z 

( -  1 ) ~ + ' 2 x i a  if t = ( 2 k + l ) ~ ,  k e Z .  

- 
= H ( U ;  f ) =  
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Using the formula for the generating function of the Laguerre polynomials: 

one gets 

r H ( U ;  E ) =  2 ~ 3 ( E - ( 2 k + l ) ) ( - l ) ~ L , ( 2 H ) e - ~  
k = O  

and Sp H = { 1,3,5,7,  . . .}, as expected (recall that h = 2). 
(vi)  Harmonic ‘antioscillator’. 

H = -i( 2 P  2 +  $) 

sec (2) exp( -iH tan i) if t f ( 2 k +  l ) ~ ,  k E Z 

( - 1 ) ~ 2 ~ i ~ 3  i f t = ( 2 k + l ) ~ ,  k E Z .  

- =H(U; t ) =  

Although we have lumped together the two cases (v)  and (vi) in table 1, they must 
be carefully distinguished now. We have the following proposition. 

Proposition. Let S be a complex symplectic 2n x 2 n  matrix such that S = i M  with M 
real. Let H’= 4‘uB’u and H = i’uBu be two homogeneous Hamiltonians, subject to 
B’ = ‘SBS. Then Sp H’ = -Sp H. 

Pro05 Since (3.11) remains valid for complex S, and according to (3.5) and (3.7), 

(where we have omitted the term with P ( t )  which vanishes if the Hamiltonian is 
homogeneous). Then 

For the harmonic ‘antioscillator’, we now obtain 

and Sp H = {-1, -3, -5, -7,. . .}. 
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For n > 1, the calculation of Fourier transforms in the indecomposable cases 
becomes computationally very difficult. In principle, we could obtain the spectra in 
the decomposable cases by convolution of the spectral projectors for the indecompos- 
able Hamiltonians. A very simple case is the isotropic harmonic oscillator in R2", 
where we get 

n + k - 1  a) 

r H ( u ;  E ) = 2 "  k=O 1 ( - l )k (  )e-HL;.1(2H)S(E - (2k+n) ) .  

Here Li-' denotes the associated Laguerre polynomial of order n - 1  and degree k. 
Note that the correct degeneration of levels is obtained. 

7. Conclusion 

The programme set out by Moshinsky and Winternitz [2] may be implemented com- 
pletely in the Moyal formulation. This is better adapted to dealing with quadratic 
Hamiltonians because of its underlying canonical symmetry. By use of formulae such 
as those developed in § 2 and appendix 1, all physical questions related to the 
corresponding dynamical problems can be treated directly from our explicit formulae. 
If one is reluctant to abandon the conventional formalism, one can always derive the 
Green functions from our Moyal propagators. 
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Appendix 1. Quadratic Hamiltonians and the Moyal algebra 

In this appendix, we examine the mathematical basis of the Moyal formalism more 
closely and establish the following results: the Moyal propagator for any non-singular 
(time-independent) quadratic Hamiltonian lies in the Moyal algebra of tempered 
distributions [4]; the operator corresponding to such a Hamiltonian is self-adjoint, 
and its spectrum is given by the support (on E )  of the Fourier transform of the Moyal 
propagator. 

The twisted product (2.4) of functions on R2" can be extended in a natural manner 
to a certain class of distributions on R'". Let 9'(R2") denote the Schwartz space of 
smooth rapidly decreasing functions on R2" and let 9"(R2") be its dual space of 
tempered distributions. Then i f f ;  g E 9'(R2"), we also havefx g E .SP(R2"); by duality, 
one can extend the twisted product to the case where either f or g lies in 9"(R2"), in 
which case f x  g is also a tempered distribution; and by a further extension, both f 
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and g can be tempered distributions provided at least one of them lies in 

A ( R 2 " )  = { f ~  Y'(R2"):fx h, h X ~ E  Y ( R 2 " )  whenever h E Y ( R 2 " ) )  

which turns out to be an involutive algebra of distributions under the twisted product, 
called the Moyal algebra (with complex conjugation as the involution). For details of 
this extension, we refer to [4]. 

If &(R2")  is to be considered as a natural 'algebra of observables' for phase-space 
quantum mechanics, one must show that it contains the Moyal propagators E H  ( U ;  t )  
for a large class of Hamiltonians H. We now show that this class includes all 
non-singular quadratic Hamiltonians. This is also a step in the proof of self-adjointness 
for W (  H). 

It is known that a tempered distribution T lies in .U(R2") if and only if the 
corresponding operator W (  T )  on L 2 ( R " )  and its adjoint W (  T)" = W ( T )  are defined 
on the dense subspace Y ( R " )  and leave Y(R") invariant [4]. As in the calculation of 
the formula for the Green function, we find, for 9 E Y ( R " ) ,  that 

E H ( 4 ( ~ + y ) ,  z; t )  exp[$'z(x-y)]*(y) dy dz. (Al . l )  
1 

It thus remains to establish that W ( E H ( t ) ) 9  and W ( E H ( t ) ) q  lie in Y ( R " )  whenever 
v' E Y ( R n )  for suitable Hamiltonians H. 

Theorem 4. If H is a non-singular time-independent quadratic Hamiltonian, then 
E H ( f )  lies in A ( R 2 " )  for all t E R. 

Proof: If S is a real symplectic 2 n  x 2 n  matrix and uo E R2", it is clear that the change 
of variables f (u)=f(Su+uo)  leaves Y ( R 2 " )  invariant, and from (2.4) we see that 
f x  = ( f x  g ) - ;  thus A ( R 2 " )  is also invariant under f-j By (3.16) it thus suffices 
to establish the theorem for H =~ 'uBu,  where JB is a simple representative of its 
symplectic conjugacy class. Moreover, by (4.15), we may suppose that JB is indecom- 
posable. 

If JB is given by (4.1) or (4.41, we find that E H ( q , p ;  t )  =exp(i'pKq), where K 
denotes the upper left n x n block of tanh(JBt/2). In these cases, (Al . l )  reduces to 

[ w ( E H ( f ) ) ~ l ( ~ )  

1 
=- exp[$'z(I+ K)x]  exp[-4ity '(I-K)z]9(y)dy dz (A1.2) 

( 4 4 "  JRn 
and w(sH(?))v' equals the right-hand side of (A1.2) with K replaced by -K,  so the 
desired follows from the invariance of Y ( R " )  under the Fourier transform, provided 
that the matrices I * K are non-singular. 

If JB is given by (4.2) or (4.3), then (Al . l )  reduces to a less simple form, since 
quadratic exponential terms appear in the analogue of (A1.2). However, since 9'(Rn) 
is stable under translations and multiplication by exp[$'xFx], for any real symmetric 
matrix F, one verifies that the same result holds as in the previous cases: W ( S H ( i ) )  
and its adjoint preserve Y ( R " )  provided that I - K and I + K are non-singular. 
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From (4.6), one verifies that in all cases det( I + K )  det( I - K )  = det( I + tanh( Lt/2)), 
where L is the semisimple part of JB. From (4.7), (4.10) and (4.14), the value of 
D = det(Z + tanh( Lt/2)) can be computed for each of the indecomposable cases ( a ) ,  
( b )  and ( c )  of § 4. The results are: 

case ( a ) :  D = sechZk ( y )  
case ( b ) :  D = secZk ($) 

[ ( 2 + 2  cosh at cos Pt)2+(2  sinh at sin P t ) ' I k  

(cosh a t + c o s  pt)4k 
case ( e ) :  D =  

Thus D does not vanish for any t ,  as required. ( In  case ( b ) ,  the values t = (2m + 1).r/p, 
rn integer, deserve a comment: at such values, EH( t )  is proportional to a 8 distribution 
concentrated at a point, which in any case lies in A ( R 2 " ) . )  

Now let H be a non-singular quadratic Hamiltonian. From (3.3), it is clear that 
H E  A ( R 2 " ) .  Let W o ( H )  denote the operator defined by (2.1) or (2.6) withfreplaced 
by H, whose domain is Y ( R " ) .  Moreover, W o ( Z H ( t ) ) ,  similarly defined as an operator 
with domain Y ( R " )  from the functional form (3.5) by means of ( A l . l ) ,  forms a 
continuous group of operators on Y ( R " )  which extends to a group U ( t )  of unitary 
operators on L 2 ( R " ) .  Let $i W ( H ) t  denote the generator of this unitary group. Then 
clearly Y ( R " )  c 9( W ( H ) )  and W ( H ) q  = W , , ( H ) q  for all q~ Y ( R " ) .  By theorem 4, 
the domain Y ( R " )  of WO( H )  is invariant under the unitary group U( t ) .  

From a theorem of Taylor [19, prop. B.31, we conclude that W o ( H )  is essentially 
self-adjoint and  W (  H) is its unique self-adjoint extension. Thus the functional calculus 
properties dealt with in § 2 are rigorously valid for non-singular quadratic Hamiltonians. 

The foregoing is also true for singular quadratic Hamiltonians; in fact, a theorem 
by Wang 11201 guarantees that, iff is any real smooth function such that all its derivatives 
of order at least two are bounded, then E f (  U, t )  exists as an  element of A. The proof, 
however, is involved and  demands familiarity with the methods of pseudodiff erential 
operator theory; this is why we chose to present here an elementary proof within our 
sphere of interest. 

Finally, we consider the spectrum of W ( H ) ,  which we have denoted Sp  H. We 
show that this coincides with supp, rH.  If VI E Y ( R " ) ,  let & ( U )  = W - ' ( l q ) ( q l ) ( u ) .  
From the formulae of § 2 we see that 

('€Iexp(-i W ( H ) t / Z ) J q )  f q ( u ) Z H ( u ,  t )  du. 

By the spectral theorem, we may write 

(A1.3) 

(A1.4) 

where pq is the spectral measure associated with 9 [21]. 
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Equation (2.10) defines a function r H (  E)  with values in Y'(RZn) or, more precisely, 
a Y'(R2")-valued measure TH(dE)  for which 

r 

E H ( u ,  t )  = e-i'E/21'H(u, d E )  
J R  

(A1.5) 

where the integral in (A1.5) extends, in fact, over supp, r H .  Define the complex 
measure v9 by 

Clearly supp v y c  SUPP, r H .  Then 

du e-i'E/2fy(u)rH(u, d E )  = dv,(E) J R 2 , 8 ~ ~ ( ~ ) ~ H ( ~ ,  t )  d u =  5, JR2.. 1. 
Together with (A1.3) and (A1.4), this implies that the complex measures p9, v9 have 
the same Fourier transforms and hence coincide. 

Since Sp H = u9 supp p9 [21], we thus obtain that Sp H c SUPP, r H .  

On the other hand, if E E SUPP, rH, rH(dE)  and therefore Wo(rH(dE))  are not 
identically zero on any neighbourhood V of E. Thus we can find @ E  SP(Rn) so that 
(@I Wo(TH(dE) ) J@)~O on V. Since 

we find that V n supp F~ = V n supp po # 0 and hence V n Sp H # 0. Thus E E Sp H. 
We conclude that SUPP, r H  c Sp H. 

We have proven that SUppErH = Sp H whenever W( H) is self-adjoint and E H  ( t )  E 
A(R2")  for all t .  In particular, the methods sketched in D 6 do indeed lead to the 
calculation of spectra in our case. 

We remark that the measure T,(dE) is always discrete or absolutely continuous 
in the present context. Thus the notation r H (  U, E )  d E  employed throughout the paper, 
instead of r H ( u ,  dE) ,  is justified. In the discrete case, the r H ( u ,  E )  belong to Y(R*"); 
otherwise, they are tempered distributions that do not belong to the Moyal algebra. 

Appendix 2. The path-integral form for the Moyal propagator 

The ordinary exponential function can be defined as 

e x =  lim ( I + x / N ) ~ .  
N - D 

This gives a heuristic suggestion for the calculation of Moyal propagators. Let us 
write Z H (  U ;  t )  = n r G k s N E H ( ~ ;  t / N ) .  Considering, for simplicity, a time-independent 
Hamiltonian, one has 
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We conjecture then 

( N  times) 

The explicit form of 
integral signs will be omitted): 

is calculated now, following [ 2 2 ]  (the subscripts under the 

N )] ( A 2 . 1 )  
N f  

2 i = l  N c - H ( y i ) - 2  ('xi+,Jyi+tyiJxi+'xiJxi+l) 
i = l  

x exp [ -!( 
where we made the little trick of twisted-multiplying the last factor by 1 in order to 
get a more rounded expression; also, we put xN+l = U. 

Assume now that N is even. We rewrite the second part in the exponent in ( A 2 . 1 ) :  

G N  : = ' Y ~ J X ~ + ' ( ~ , - ~ ~ ) J X ~ + ' ( Y ~ - Y ~ ) J X , + .  . . + t ( y N  - Y N - I ) J x N  

+ ' x N +  1 JyN + '(XI - x ~ ) J x ~  + ' (  ~3 - xS)JX~ + . . . + '( XN - 1 - X N  + 1 ) J x N  

and apply the method of stationary phase to perform the integral over the x. That is, 
we equate to zero the derivatives of the previous expression with respect to the x, 
which yields 

Instead of writing the resulting expression as an iterated integral over the y, we go 
over directly to the continuous limit. Let us introduce the time parameter T, such that 
Os 7s t, and assume X 2 k  = x ( ~ k ) ;  . q k + l = Z ( ~ ~ ~ + ~ ) ;  y k  = Y ( T ~ ) .  The limit N+oo in the 
expression ( A 2 . 2 )  gives the following relations among the continuous trajectories x( T ) ,  
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We find also 

' lim ' GN = ' y (  t ) J i (  t )  +'uJy(O) 
N +s 

after some work (where t ( y ( 0 )  + y (  t ) )  = U must be used). 

integral over paths: 
We have, then, the following expressions for the Moyal propagator as a normalised 

with x(0) = U (A2.3) 

(A2.4) 

The former is from (A2.1); the latter comes from our stationary phase calculation. 
In (A2.4) one has the condition $ ( y ( O ) + y ( t ) )  = U. (Taking N odd in the argument 
leading to (A2.4) is messier, but the final result is the same.) 

Formula (A2.1) can be applied in principle to direct calculations of evolution 
functions, at least in simple cases. The one example known to the authors of such a 
calculation, which gives the evolution function for the harmonic oscillator again, may 
be found in [23]. On the other hand, it is fruitful, as in conventional quantum 
mechanics, to examine the expansion of (A2.4) around classical paths. We can consider 
the expressions under the integral sign in the 'integrands' of (A2.3) and (A2.4) as 
Lagrangians of sorts. In the second case, for instance, the Euler-Lagrange equations 
(d/dt)aL/ay = aL/@ give 

i.e. Hamilton's equations! We will denote byy,,(T) a path obeying the classical dynamics 
with ~(yc l (0)+ycl ( t ) )  = U. The exponent of (A2.4) for these paths: 

a H / a y  = - J j  

&(U; t )  = lo' [H(y,i(7))+tty,i(T)Jj,i(7)] d7+'y(O)Ju 
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is obviously a symmetrical form of the classical action. One arrives as well at the last 
formula from (A2.3). Note that the ‘Lagrangian’ under the integral sign in (A2.3) or 
(A2.4) is a singular one, so it would seem that we are not entitled to use the Euler- 
Lagrange equations. The proper theory [24], however, gives also in the present case 
Hamilton’s equations as a kind of necessary constraintt. 

If the Hamiltonian is quadratic, the Moyal propagator can be calculated solely 
from the classical paths, in much the same way as the path integral calculation proceeds 
for the propagator in the standard theory, for quadratic Lagrangians. In effect, 
application of the method of stationary phase in (A2.4) gives at once 

We leave it to the reader to check that in this case gc, is the same quantity that we 
have denoted by gH throughout the paper. 

One can now calculate F(t) from the path integral, but it is easier to get it from 
the group property of E H  (as noted in [25]) .  We obtain anew the basic formulae 
employed in the paper; the details are omitted. Note that this derivation of the general 
form of the evolution function for quadratic Hamiltonians gives immediately the 
pre-exponential factor, in contradistinction to our method in § 3. 

It is clear that we could employ the method of stationary phase in (A2.3) or (A2.4) 
to obtain the point de dipart of a semiclassical expansion of the Moyal propagator for 
arbitrary Hamiltonians [ 261. 

E H  ( U ;  t )  = F (  t )  exp[ -$gel( U ;  t ) ] .  
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